Regita, Iga Ayustidiah (2024) ANALISIS SENTIMEN PENGGUNA APLIKASI MOBILE BANKING PADA GOOGLE PLAY DENGAN MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIRE(NBC) DAN K-NEAREST NEIGHBOR (KNN). S1 thesis, Universitas Malikussaleh.
Text
Cover.pdf Download (55kB) |
|
Text
ABSTRAK.pdf Download (35kB) |
|
Text
BAB I.pdf Download (149kB) |
|
Text
DAFTAR PUSTAKA.pdf Download (97kB) |
|
Text
cetak_fikss.pdf Restricted to Registered users only Download (3MB) |
Abstract
Mobile Banking merupakan salah satu layanan dari perbankan yang memberikan kemudahan dalam melakukan transaksi perbankan melalui smartphone. Semua aktifitas layanan perbankan dapat diakses melalui mobile banking tersebut, seperti transfer uang, pembayaran kartu kredit, dan penggunaan uang digital. Aplikasi BSI Mobile dan Action Bank Aceh termasuk layanan mobile banking yang dapat diunduh pada Google Play Store. Setiap pengguna dapat memberikan ulasan pada mobile banking tersebut di Google Play Store dengan memberikan rating dan ulasan. Selain itu, pengguna media sosial Twitter (X) juga sering memberikan pendapat mereka tentang mobile banking tersebut. Berdasarkan ulasan para pengguna mobile banking tersebut ditemukan beberapa opini dan keluhan dari pengguna terkait layanan dari mobile banking tersebut. Pihak pengembang dari BSI Mobile dan Action Bank Aceh perlu meningkatkan layanan dari aplikasi tersebut untuk meningkatkan kepuasan dari para pengguna. Tujuan dari penelitian ini adalah untuk mengetahui respon dari pengguna mobile banking tersebut dengan kategori positif dan negatif, serta mengukur nilai accuracy perbandingan dari metode Naïve Bayes Classifier dan K-Nearest Neighbor terhadap aplikasi BSI Mobile dan Action Bank Aceh. Hasil penerapan dari metode Naïve Bayes Classifier pada aplikasi BSI Mobile di Google Play Store mendapatkan nilai akurasi tertinggi pada rasio 80:20 dengan 78% accuracy, 75% precission, 23% recall, dan 35% F1-Score. Pada aplikasi Action Bank Aceh mendapatkan akurasi tertinggi pada rasio 90:10 dengan menggunakan metode Naïve Bayes Classifier dengan 78% accuracy, 68% precission, 64% recall, dan 66% F1-Score. Sedangkan pada Twitter (X), hasil penerapan dari metode Naïve Bayes Classifier mendapatkan nilai akurasi tertinggi pada rasio 90:10 sebesar 75% accuracy, 66% precision, 66% recall, dan 66% F1-score. Dari penelitian ini dapat disimpulkan bahwa metode yang lebih baik digunakan untuk mengukur akurasi pada penelitian ini adalah metode Naïve Bayes Classifier. Kata kunci: mobile banking, Naïve Bayes Classifier, K-Nearest Neighbor Abstrack Mobile Banking is a banking service that makes it easy to carry out banking transactions via smartphone. All banking service activities can be accessed via mobile banking, such as money transfers, credit card payments and the use of digital money. The BSI Mobile and Action Bank Aceh applications include mobile banking services that can be downloaded on the Google Play Store. Every user can provide a review of mobile banking on the Google Play Store by providing ratings and reviews. Apart from that, Twitter (X) social media users also often give their opinions about mobile banking. Based on reviews from mobile banking users, several opinions and complaints were found from users regarding the mobile banking service. The developers from BSI Mobile and Action Bank Aceh need to improve the services of the application to increase user satisfaction. The aim of this research is to determine the responses of mobile banking users in positive and negative categories, as well as measure the comparative accuracy value of the Naïve Bayes Classifier and K-Nearest Neighbor methods for the BSI Mobile and Action Bank Aceh applications. The results of applying the Naïve Bayes Classifier method to the BSI Mobile application on the Google Play Store obtained the highest accuracy score at a ratio of 80:20 with 78% accuracy, 75% precision, 23% recall and 35% F1-Score. The Action Bank Aceh application achieved the highest accuracy at a ratio of 90:10 using the Naïve Bayes Classifier method with 78% accuracy, 68% precision, 64% recall and 66% F1-Score. Meanwhile on Twitter (X), the results of applying the Naïve Bayes Classifier method obtained the highest accuracy value at a ratio of 90:10 of 75% accuracy, 66% precision, 66% recall and 66% F1-score. From this research it can be concluded that the better method to use to measure accuracy in this research is the Naïve Bayes Classifier method. Keywords: mobile banking, Naïve Bayes Classifier, K-Nearest Neighbor
Item Type: | Thesis (S1) |
---|---|
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science Q Science > QA Mathematics > QA76 Computer software |
Divisions: | Fakultas Teknik > 57201 - Jurusan Sistem Informasi |
Depositing User: | Iga Ayustidiah Regita |
Date Deposited: | 26 Jul 2024 08:18 |
Last Modified: | 26 Jul 2024 08:18 |
URI: | https://rama.unimal.ac.id/id/eprint/3549 |
Actions (login required)
View Item |