

DAFTAR PUSTAKA

- [1] J. Schmidt, V. Gass, and E. Schmid, “Land use changes, greenhouse gas emissions and fossil fuel substitution of biofuels compared to bioelectricity production for electric cars in Austria,” *Biomass and Bioenergy*, vol. 35, no. 9, pp. 4060–4074, Oct. 2011.
- [2] A. Pugazhendhi, A. Alagumalai, T. Mathimani, and A. E. Atabani, “Optimization, kinetic and thermodynamic studies on sustainable biodiesel production from waste cooking oil: An Indian perspective,” *Fuel*, vol. 273, p. 117725, Aug. 2020.
- [3] Y.-F. Huang, P.-H. Cheng, P.-T. Chiueh, and S.-L. Lo, “Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency,” *Appl. Energy*, vol. 204, pp. 1018–1025, Oct. 2017.
- [4] Presiden Republik Indonesia, “Peraturan Presiden Republik Indonesia Tentang Kebijakan Energi Nasional,” Indonesia, 2006. [Online]. Available: [https://jdih.esdm.go.id/peraturan/Perpres No. 05 Thn 2006.pdf](https://jdih.esdm.go.id/peraturan/Perpres%20No.%2005%20Thn%202006.pdf)
- [5] J. Wang *et al.*, “Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk,” *Energy*, vol. 86, pp. 488–499, Jun. 2015.
- [6] R. López, C. Fernández, J. Fierro, J. Cara, O. Martínez, and M. E. Sánchez, “Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis,” *Energy*, vol. 74, pp. 845–854, Sep. 2014, doi.
- [7] J. Mercy Nisha Pauline, R. Sivaramakrishnan, A. Pugazhendhi, T. Anbarasan, and A. Achary, “Transesterification kinetics of waste cooking oil and its diesel engine performance,” *Fuel*, vol. 285, p. 119108, Feb. 2021.
- [8] P. Bielansky, A. Reichhold, and C. Schönberger, “Catalytic cracking of rapeseed oil to high octane gasoline and olefins,” *Chem. Eng. Process. Process Intensif.*, vol. 49, no. 8, pp. 873–880, Aug. 2010.
- [9] A. M. Rabie, E. A. Mohammed, and N. A. Negm, “Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils,” *J. Mol. Liq.*, vol. 254, pp. 260–266, Mar. 2018.
- [10] Y. K. Ong and S. Bhatia, “The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils,” *Energy*, vol. 35, no. 1, pp. 111–119, Jan. 2010.
- [11] F. Yu, L. Gao, W. Wang, G. Zhang, and J. Ji, “Bio-fuel production from the catalytic pyrolysis of soybean oil over Me-Al-MCM-41 (Me = La, Ni or

Fe) mesoporous materials,” *J. Anal. Appl. Pyrolysis*, vol. 104, pp. 325–329, Nov. 2013.

[12] G. CHEN, X. ZHANG, and Z. MI, “Effects of pressure on coke and formation of its precursors during catalytic cracking of toluene over USY catalyst,” *J. Fuel Chem. Technol.*, vol. 35, no. 2, pp. 211–216, Apr. 2007.

[13] B. P. Statistik, *Indonesian Coffee Statistics*. 2021. [Online].

[14] D. E. N. M. L. Supeno B, Erwan, “Diversifikasi Pemanfaatan Limbah Kulit Buah Kopi Untuk Produksi Yang Bernilai Ekonomis Tinggi di Kabupaten Lombok Utara,” in *Prosiding PKM-CSR*, 2018, p. 9. [Online].

[15] D. Duan, Y. Zhang, Y. Wang, H. Lei, Q. Wang, and R. Ruan, “Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons,” *Energy*, vol. 209, p. 118454, Oct. 2020.

[16] N. S. Shamsul, S. K. Kamarudin, and N. A. Rahman, “Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review,” *Renew. Sustain. Energy Rev.*, vol. 80, pp. 538–549, Dec. 2017.

[17] S. Suganuma and N. Katada, “Innovation of catalytic technology for upgrading of crude oil in petroleum refinery,” *Fuel Process. Technol.*, vol. 208, p. 106518, Nov. 2020.

[18] A. B. Bindwal, A. H. Bari, and P. D. Vaidya, “Kinetics of low temperature aqueous-phase hydrogenation of model bio-oil compounds,” *Chem. Eng. J.*, vol. 207–208, pp. 725–733, Oct. 2012.

[19] S. K. Maity, “Opportunities, recent trends and challenges of integrated biorefinery: Part I,” *Renew. Sustain. Energy Rev.*, vol. 43, pp. 1427–1445, Mar. 2015.

[20] D. A. Bulushev and J. R. H. Ross, “Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review,” *Catal. Today*, vol. 171, no. 1, pp. 1–13, Aug. 2011.

[21] Badan Pusat Statistik, “Statistik Kopi Indonesia,” 2023. [Online].

[22] A. Hejna, “Potential applications of by-products from the coffee industry in polymer technology – Current state and perspectives,” *Waste Manag.*, vol. 121, pp. 296–330, Feb. 2021.

[23] P. S. Murthy and M. Madhava Naidu, “Sustainable management of coffee industry by-products and value addition—A review,” *Resour. Conserv. Recycl.*, vol. 66, pp. 45–58, Sep. 2012.

[24] P. Esquivel and V. M. Jiménez, “Functional properties of coffee and coffee by-products,” *Food Res. Int.*, vol. 46, no. 2, pp. 488–495, May 2012.

- [25] V. P. Doronin, O. V. Potapenko, P. V. Lipin, and T. P. Sorokina, “Catalytic cracking of vegetable oils and vacuum gas oil,” *Fuel*, vol. 106, pp. 757–765, Apr. 2013.
- [26] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” *Prog. Energy Combust. Sci.*, vol. 62, pp. 33–86, Sep. 2017.
- [27] Y. Han *et al.*, “Hydrotreatment of pyrolysis bio-oil: A review,” *Fuel Process. Technol.*, vol. 195, p. 106140, Dec. 2019.
- [28] W. Kiyingi, J.-X. Guo, R.-Y. Xiong, L. Su, X.-H. Yang, and S.-L. Zhang, “Crude oil wax: A review on formation, experimentation, prediction, and remediation techniques,” *Pet. Sci.*, vol. 19, no. 5, pp. 2343–2357, Oct. 2022.
- [29] T. Kandaramath Hari, Z. Yaakob, and N. N. Binitha, “Aviation biofuel from renewable resources: Routes, opportunities and challenges,” *Renew. Sustain. Energy Rev.*, vol. 42, pp. 1234–1244, Feb. 2015.
- [30] T. L. Chew and S. Bhatia, “Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery,” *Bioresour. Technol.*, vol. 99, no. 17, pp. 7911–7922, Nov. 2008.
- [31] M. S. Akhtar, S. Ali, and W. Zaman, “Recent Advancements in Catalysts for Petroleum Refining,” *Catalysts*, vol. 14, no. 12, p. 841, Nov. 2024.
- [32] Z. Zhang *et al.*, “Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process,” *Energy*, vol. 90, pp. 1922–1930, Oct. 2015.
- [33] R. Sun *et al.*, “Selective C–C and C–O bond cleavage strategies for the thermochemical upgrading of (hemi)cellulosic biomass,” *Appl. Catal. B Environ.*, vol. 344, p. 123599, May 2024.
- [34] J. A. Martens and P. A. Jacobs, “Chapter 14 Introduction to acid catalysis with zeolites in hydrocarbon reactions,” 2001, pp. 633–671.
- [35] H. Li, B. Shen, J. C. Kabalu, and M. Nchare, “Enhancing the production of biofuels from cottonseed oil by fixed-fluidized bed catalytic cracking,” *Renew. Energy*, vol. 34, no. 4, pp. 1033–1039, Apr. 2009.
- [36] Y. Li, L. Li, and J. Yu, “Applications of Zeolites in Sustainable Chemistry,” *Chem*, vol. 3, no. 6, pp. 928–949, Dec. 2017.
- [37] V. M. Moreira, “Carbocations,” 2024, pp. 205–235.
- [38] J. G. Speight, “Catalytic Cracking Processes,” in *Heavy Oil Recovery and Upgrading*, Elsevier, 2019, pp. 357–421.

[39] R. E. Emberru, R. Patel, I. M. Mujtaba, and Y. M. John, “A Review of Catalyst Modification and Process Factors in the Production of Light Olefins from Direct Crude Oil Catalytic Cracking,” *Sci*, vol. 6, no. 1, p. 11, Feb. 2024.

[40] S. Z. Naji, C. T. Tye, and A. A. Abd, “State of the art of vegetable oil transformation into biofuels using catalytic cracking technology: Recent trends and future perspectives,” *Process Biochem.*, vol. 109, pp. 148–168, Oct. 2021.

[41] S. A. N. Rahman, A. Irawan, and T. Kurniawan, “Konversi Hidrokarbon Menjadi Olefin Melalui Perengkahan Termal dan Katalitik,” *J. Integritas Proses*, vol. 9, pp. 1–8, 2020.

[42] A. Adlan, “Perengkahan Katalitik Campuran Minyak Jarak dan Air Menjadi Hidrokarbon Setara Fraksi Bensin Menggunakan Katalis B2O3/Zeolit,” Universitas Indonesia, 2009.

[43] I. Tkatchenko, “Synthesis with Carbon Monoxide and a Petroleum Product,” in *Comprehensive Organometallic Chemistry*, Elsevier, 1982, pp. 101–223.

[44] R. J. Ouellette and J. D. Rawn, “Carboxylic Acids,” in *Organic Chemistry*, Elsevier, 2018, pp. 625–663.

[45] K. A. Resende, R. Zhao, Y. Liu, E. Baráth, and J. A. Lercher, “Impact of Sn Lewis Acid Sites on the Dehydration of Cyclohexanol,” *ACS Catal.*, vol. 14, no. 15, pp. 11741–11748, Aug. 2024.

[46] S. Li and H. Chen, “Solvent effect in H-BEA catalyzed cyclohexanol dehydration reaction,” *J. Chem. Phys.*, vol. 160, no. 23, Jun. 2024.

[47] E. F. . Herington and E. . Rideal, “On the catalytic cyclization of aliphatic hydrocarbons. I,” *Proc. R. Soc. London. Ser. A. Math. Phys. Sci.*, vol. 184, no. 999, pp. 434–446, Nov. 1945.

[48] H. Montalvo-Castro, M. DeLuca, L. Kilburn, and D. Hibbitts, “Mechanisms and Kinetics of the Dehydrogenation of C₆–C₈ Cycloalkanes, Cycloalkenes, and Cyclodienes to Aromatics in H-MFI Zeolite Framework,” *ACS Catal.*, vol. 13, no. 1, pp. 99–112, Jan. 2023.

[49] A. S. Al-Awadi, S. M. Al-Zahrani, A. M. El-Toni, and A. E. Abasaeed, “Dehydrogenation of Ethane to Ethylene by CO₂ over Highly Dispersed Cr on Large-Pore Mesoporous Silica Catalysts,” *Catalysts*, vol. 10, no. 1, p. 97, Jan. 2020.

[50] A. Galadima and O. Muraza, “Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: A review,” *J. Ind. Eng. Chem.*, vol. 29, pp. 12–23, Sep. 2015.

[51] P. W. N. M. van Leeuwen, “Homogeneous Metal Catalysis,” in *Reference Module in Chemistry, Molecular Sciences and Chemical Engineering*, Elsevier, 2016.

[52] A. Ravi *et al.*, “Contemporary approaches towards augmentation of distinctive heterogeneous catalyst for sustainable biodiesel production,” *Environ. Technol. Innov.*, vol. 19, p. 100906, Aug. 2020.

[53] Y. Zhang, S. Niu, C. Lu, Z. Gong, and X. Hu, “Catalytic performance of NaAlO₂/γ-Al₂O₃ as heterogeneous nanocatalyst for biodiesel production: Optimization using response surface methodology,” *Energy Convers. Manag.*, vol. 203, p. 112263, Jan. 2020.

[54] J. M. Woodley, “Biocatalysis for future sustainable manufacturing,” *Biochem. (Lond.)*, vol. 44, no. 3, pp. 6–8, Jun. 2022.

[55] T. Wikaningrum and E. Pratamadina, “Potensi Penggunaan Eco Enzyme Sebagai Biokatalis Dalam Penguraian Minyak dan Lemak pada Air Limbah Domestik,” *J. Serambi Eng.*, vol. 7, no. 4, Oct. 2022.

[56] M. W. Lestari, “Sintesis Dan Karakterisasi Nanokatalis CuO/TiO₂ Yang Diaplikasikan Pada Proses Degradasi Limbah Fenol,” Universitas Negeri Semarang, 2012. [Online].

[57] Y. Fam and T. Imae, “Catalytic oxidation of formaldehyde in water by calcium phosphate-based Pt composites,” *RSC Adv.*, vol. 5, no. 21, pp. 15944–15953, 2015.

[58] E. Kianfar, S. Hajimirzaee, S. Mousavian, and A. S. Mehr, “Zeolite-based catalysts for methanol to gasoline process: A review,” *Microchem. J.*, vol. 156, p. 104822, Jul. 2020.

[59] P. E. Rahayu, “Konversi Minyak Sawit Menjadi Biogasoline Menggunakan Katalis Ni/Zeolit Alam,” Universitas Negeri Semarang, 2012. [Online].

[60] G. A. Jablonski, L. B. Sand, and J. A. Gard, “Synthesis and identification of pentasil intergrowth structures,” *Zeolites*, vol. 6, no. 5, pp. 396–402, Sep. 1986.

[61] E. Mikuli, A. Migdał-Mikuli, R. Chyży, B. Grad, and R. Dziembaj, “Melting and thermal decomposition of [Ni(H₂O)₆](NO₃)₂,” *Thermochim. Acta*, vol. 370, no. 1–2, pp. 65–71, Apr. 2001.

[62] W. Brockner, C. Ehrhardt, and M. Gjikaj, “Thermal decomposition of nickel nitrate hexahydrate, Ni(NO₃)₂·6H₂O, in comparison to Co(NO₃)₂·6H₂O and Ca(NO₃)₂·4H₂O,” *Thermochim. Acta*, vol. 456, no. 1, pp. 64–68, 2007.

[63] T. Bligaard, J. K. Nørskov, and B. I. Lundqvist, “Chapter 8 Understanding

Heterogeneous Catalysis from the Fundamentals,” 2008, pp. 269–340.

- [64] A. G. Olaremu, W. R. Adedoyin, O. T. Ore, and A. O. Adeola, “Sustainable development and enhancement of cracking processes using metallic composites,” *Appl. Petrochemical Res.*, vol. 11, no. 1, pp. 1–18, May 2021.
- [65] R. Luque *et al.*, “Functionalized interconnected porous materials for heterogeneous catalysis, energy conversion and storage applications: Recent advances and future perspectives,” *Mater. Today*, vol. 73, pp. 105–129, Mar. 2024.
- [66] G. L. Messing, “Calcination and Phase Transformations,” in *Encyclopedia of Materials: Science and Technology*, Elsevier, 2001, pp. 887–892.
- [67] F. J. Lesafi, T. Pogrebnaya, and C. K. King’ondu, “Effect of the calcination temperature on SnO₂-MoO₃ crystal structure and catalytic activity in desulfurization of model diesel,” *Fuel*, vol. 330, p. 125601, Dec. 2022.
- [68] K. Joao, “Thermo-Gravimetric Analysis in the Investigation of Catalysts : Insights and Innovations,” vol. 15, no. 1000597, pp. 13–14, 2024.
- [69] H. Yang *et al.*, “Study on the formation mechanism of thermal coke during sludge pyrolysis,” *Fuel*, vol. 392, p. 134826, Jul. 2025.
- [70] F. Wang *et al.*, “Coke formation of heavy oil during thermal cracking: New insights into the effect of olefinic-bond-containing aromatics,” *Fuel*, vol. 336, p. 127138, Mar. 2023.
- [71] G. Palmisano, S. Al Jitan, and C. Garlisi, “Surface area and porosity,” in *Heterogeneous Catalysis*, Elsevier, 2022, pp. 101–140.
- [72] J. Liu *et al.*, “Innovative non-thermal plasma treated NiMo-ADM zeolite catalyst for dry reforming of methane,” *J. Energy Inst.*, vol. 120, p. 102050, Jun. 2025.
- [73] J. Zhou, J. Zhao, J. Zhang, T. Zhang, M. Ye, and Z. Liu, “Regeneration of catalysts deactivated by coke deposition: A review,” *Chinese J. Catal.*, vol. 41, no. 7, pp. 1048–1061, Jul. 2020.
- [74] V. Daligaux, R. Richard, and M.-H. Manero, “Deactivation and Regeneration of Zeolite Catalysts Used in Pyrolysis of Plastic Wastes—A Process and Analytical Review,” *Catalysts*, vol. 11, no. 7, p. 770, Jun. 2021.
- [75] A. Thakur, A. Kumar, S. Kaya, D.-V. N. Vo, and A. Sharma, “Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: A review,” *Fuel*, vol. 312, p. 122934, Mar. 2022.
- [76] A. L. Demain and M. A. Báez-Vásquez, “Biofuels of the Present and the

Future," in *New and Future Developments in Catalysis*, Elsevier, 2013, pp. 325–370.

- [77] N. Sharma, B. Bohra, N. Pragya, R. Ciannella, P. Dobie, and S. Lehmann, "Bioenergy from agroforestry can lead to improved food security, climate change, soil quality, and rural development," *Food Energy Secur.*, vol. 5, no. 3, pp. 165–183, Aug. 2016.
- [78] A. Demirbas, "Competitive liquid biofuels from biomass," *Appl. Energy*, vol. 88, no. 1, pp. 17–28, Jan. 2011.
- [79] Hartati *et al.*, "Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of *Calophyllum inophyllum* oil to biofuel," *J. Energy Inst.*, vol. 93, no. 6, pp. 2238–2246, Dec. 2020.
- [80] I. Kariim, H. Swai, and T. Kivevele, "Recent advances in thermochemical conversion of biomass into drop-in fuel:a review," *Sci. African*, vol. 17, p. e01352, Sep. 2022.
- [81] A. Carrasco Díaz, L. Abdelouahed, N. Brodu, V. Montes-Jiménez, and B. Taouk, "Upgrading of Pyrolysis Bio-Oil by Catalytic Hydrodeoxygenation, a Review Focused on Catalysts, Model Molecules, Deactivation, and Reaction Routes," *Molecules*, vol. 29, no. 18, p. 4325, Sep. 2024.
- [82] R. N. Vilas Bôas and M. F. Mendes, "A Review Of Biodiesel Production From Non-Edible Raw Materials Using The Transesterification Process With A Focus On Influence Of Feedstock Composition And Free Fatty Acids," *J. Chil. Chem. Soc.*, vol. 67, no. 1, pp. 5433–5444, Jan. 2022.
- [83] S. Wang, Q. Cai, X. Wang, L. Zhang, Y. Wang, and Z. Luo, "Biogasoline production by co-cracking of model compound mixture of bio-oil and ethanol over HSZM-5," *Chinese J. Catal.*, vol. 35, no. 5, pp. 709–722, May 2014.
- [84] N. Haryani, H. Harahap, Taslim, and Irvan, "Biogasoline production via catalytic cracking process using zeolite and zeolite catalyst modified with metals: a review," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 801, no. 1, p. 012051, May 2020.
- [85] R. A. Quevedo-Amador *et al.*, "Application of waste biomass for the production of biofuels and catalysts: a review," *Clean Technol. Environ. Policy*, vol. 26, no. 4, pp. 943–997, Apr. 2024.
- [86] M. W. Jarvis *et al.*, "Catalytic Upgrading of Biomass Pyrolysis Oxygenates with Vacuum Gas Oil Using a Davison Circulating Riser Reactor," *Energy & Fuels*, vol. 32, no. 2, pp. 1733–1743, Feb. 2018.
- [87] I. Kariim, H. Swai, and T. Kivevele, "Bio-Oil Upgrading over ZSM-5 Catalyst: A Review of Catalyst Performance and Deactivation," *Int. J.*

Energy Res., vol. 2023, pp. 1–33, Dec. 2023.

- [88] E. Stauffer, J. A. Dolan, and R. Newman, “Flammable and Combustible Liquids,” in *Fire Debris Analysis*, Elsevier, 2008, pp. 199–233.
- [89] I. Aziz, P. Sugita, N. Darmawan, and A. A. Dwiatmoko, “Effect of desilication process on natural zeolite as Ni catalyst support on hydrodeoxygenation of palm fatty acid distillate (PFAD) into green diesel,” *South African J. Chem. Eng.*, vol. 45, no. July, pp. 328–338, 2023.
- [90] K. Wijaya, S. E. Purba, W.- Trisunaryanti, and R. A. Pratika, “Dealuminated and Desilicated Natural Zeolite as a Catalyst for Hydrocracking of Used Cooking Oil into Biogasoline,” *Mediterr. J. Chem.*, vol. 11, no. 1, p. 75, 2021.
- [91] H. Husin *et al.*, “Conversion of polypropylene-derived crude pyrolytic oils using hydrothermal autoclave reactor and ni/aceh natural zeolite as catalysts,” *Heliyon*, vol. 9, no. 4, 2023.
- [92] Z. D. Yigezu and K. Muthukumar, “Biofuel production by catalytic cracking of sunflower oil using vanadium pentoxide,” *J. Anal. Appl. Pyrolysis*, vol. 112, pp. 341–347, Mar. 2015.
- [93] A. Bayat and S. M. Sadrameli, “Conversion of canola oil and canola oil methyl ester (CME) to green aromatics over a HZSM-5 catalyst: a comparative study,” *RSC Adv.*, vol. 5, no. 36, pp. 28360–28368, 2015.
- [94] X. Zhao, L. Wei, S. Cheng, and J. Julson, “Optimization of catalytic cracking process for upgrading camelina oil to hydrocarbon biofuel,” *Ind. Crops Prod.*, vol. 77, pp. 516–526, Dec. 2015.
- [95] Pertamina, “Spesifikasi Produk BBM, BBN dan LPG.”
- [96] R. Farhan Hussain, A. Mokhtari, A. Ghalambor, and M. Amini Salehi, “Smart downstream sector of O&G industry,” in *IoT for Smart Operations in the Oil and Gas Industry*, Elsevier, 2023, pp. 105–131.
- [97] A. M. Aitani, “Oil Refining and Products,” in *Encyclopedia of Energy*, Elsevier, 2004, pp. 715–729.
- [98] H. Ben Salah, P. Nancarrow, and A. Al-Othman, “Ionic liquid-assisted refinery processes – A review and industrial perspective,” *Fuel*, vol. 302, p. 121195, Oct. 2021.
- [99] Z. Sadiq, M. Iqbal, E. A. Hussain, and S. Naz, “Friedel-Crafts reactions in aqueous media and their synthetic applications,” *J. Mol. Liq.*, vol. 255, pp. 26–42, Apr. 2018.
- [100] D. Lachos-Perez *et al.*, “Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques,” *Analytica*, vol. 4, no. 2, pp. 182–205, May

2023.

- [101] X. F. Xu, S. Zilberg, and Y. Haas, “Electrophilic Aromatic Substitution: The Role of Electronically Excited States,” *J. Phys. Chem. A*, vol. 114, no. 14, pp. 4924–4933, Apr. 2010.
- [102] T. A. Natsir and S. Shimazu, “Fuels and fuel additives from furfural derivatives via etherification and formation of methylfurans,” *Fuel Process. Technol.*, vol. 200, p. 106308, Apr. 2020.
- [103] D. T. Nguyen and Q. T. Pham, “A theoretical and experimental study on etherification of primary alcohols with the hydroxyl groups of cellulose chain (n = 1–3) in acidic condition,” *J. Mol. Struct.*, vol. 1236, p. 130314, Jul. 2021.
- [104] S. Nasional Indonesia, “SNI Biodiesel,” 2015.
- [105] D. N. Amalia, A. Indrita Putri, D. A. Marhani, P. V. Amalia, A. M. Rizki, and K. Keryanti, “Biogasoline Production from Shallot Skin Waste with KOH-Clay Catalyst to Create Clean Energy,” *Fluida*, vol. 16, no. 2, pp. 85–91, Nov. 2023.
- [106] D. M. A. Setiabudi A, Hardian R, *Karakterisasi Material; Prinsip dan Aplikasinya dalam Penelitian Kimia*, Cetakan Pe. Bandung: UPI PRESS, 2012.
- [107] M. Al Muttaqii *et al.*, “Pengaruh Aktivasi secara Kimia menggunakan Larutan Asam dan Basa terhadap Karakteristik Zeolit Alam,” *J. Ris. Teknol. Ind.*, vol. 13, no. 2, p. 266, Dec. 2019.
- [108] A. Tonu Lema, C. Sabuna, and Y. W. Balu, “Optimization and Kinetic Study of Ende-Natural Zeolite as Candidates of Ammonia Adsorbent on Broiler Chicken Litter,” *KOVALEN J. Ris. Kim.*, vol. 8, no. 2, pp. 150–157, Aug. 2022.
- [109] A. Intang, P. Susmanto, M. D. Bustan, and S. Haryati, “Determination of swelling operation parameters to improve the hierarchy of natural zeolite Lampung after synthesis,” *South African J. Chem. Eng.*, vol. 50, pp. 125–134, Oct. 2024.
- [110] M. Senila and O. Cadar, “Modification of natural zeolites and their applications for heavy metal removal from polluted environments: Challenges, recent advances, and perspectives,” *Heliyon*, vol. 10, no. 3, p. e25303, Feb. 2024.
- [111] M. Dubravský and J. Mandula, “Modified Asphalt Binder with Natural Zeolite for Warm Mix Asphalt,” *Sel. Sci. Pap. - J. Civ. Eng.*, vol. 10, no. 2, pp. 61–68, Nov. 2015.

- [112] M. K. Król and P. Jeleń, “The effect of heat treatment on the structure of zeolite a,” *Materials (Basel)*., vol. 14, no. 16, pp. 1–9, 2021.
- [113] Sudiyarmanto *et al.*, “Preparation and characterization of Ni based on natural zeolite catalyst for citronellol conversion to 3,7-Dimethyl-1-Octanol,” *AIP Conf. Proc.*, vol. 1904, no. December, 2017.
- [114] J. V. Milato, R. J. França, A. S. Rocha, and M. R. C. M. Calderari, “Catalytic co-pyrolysis of oil sludge with HDPE to obtain paraffinic products over HUSY zeolites prepared by dealumination and desilication,” *J. Anal. Appl. Pyrolysis*, vol. 151, no. September, 2020.
- [115] E. Suhendi, A. Wibowo, T. Lestari, and T. Kurniawan, “Effect of Acid Concentration on the Activation of Bayah Natural Zeolite for Palm Kernel Shell Pyrolysis Application,” *Reaktor*, vol. 20, no. 3, pp. 109–116, 2020.
- [116] A. Setiawan, M. Zakarya, Alchalil, and T. Bin Nur, “Experimental Investigation and Simulation of Slow Pyrolysis Process of Arabica Coffee Agroindustry Residues in a Pilot-Scale Reactor,” *J. Ecol. Eng.*, vol. 23, no. 8, pp. 260–269, 2022.
- [117] A. Setiawan, A. G. Randa, Faisal, T. Bin Nur, and Rusdianasari, “Thermal decomposition of Gayo Arabica coffee-pulp in a segmented chamber,” *J. Phys. Conf. Ser.*, vol. 1500, no. 1, 2020.
- [118] A. V. Bridgwater, “Review of fast pyrolysis of biomass and product upgrading,” *Biomass and Bioenergy*, vol. 38, pp. 68–94, Mar. 2012.
- [119] J. H. Marsman, J. Wildschut, F. Mahfud, and H. J. Heeres, “Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection,” *J. Chromatogr. A*, vol. 1150, no. 1–2, pp. 21–27, May 2007.
- [120] W. Yin, H. Gu, M. B. Figueirêdo, S. Xia, R. H. Venderbosch, and H. J. Heeres, “Stabilization of fast pyrolysis liquids from biomass by catalytic hydrotreatment using Raney nickel ‘type’ catalysts,” *Fuel Process. Technol.*, vol. 219, p. 106846, Aug. 2021.
- [121] M. Saber, B. Nakhshiniev, and K. Yoshikawa, “A review of production and upgrading of algal bio-oil,” *Renew. Sustain. Energy Rev.*, vol. 58, pp. 918–930, May 2016.
- [122] P. Basu and P. Kaushal, “Energy and materials from biomass,” in *Biomass Gasification, Pyrolysis, and Torrefaction*, Elsevier, 2024, pp. 455–489.
- [123] S. Stelmach, K. Ignasiak, A. Czardybon, and J. Bigda, “Evaluation of Bio-Oils in Terms of Fuel Properties,” *Processes*, vol. 11, no. 12, p. 3317, Nov. 2023.

- [124] M. Bjørgen *et al.*, “Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species,” *J. Catal.*, vol. 249, no. 2, pp. 195–207, 2007.
- [125] J. Y. Kim, J. Moon, J. H. Lee, X. Jin, and J. W. Choi, “Conversion of phenol intermediates into aromatic hydrocarbons over various zeolites during lignin pyrolysis,” *Fuel*, vol. 279, no. February, p. 118484, 2020.
- [126] M. A. Abrams, N. F. Dahdah, and E. Francu, “Development of methods to collect and analyze gasoline range (C5–C12) hydrocarbons from seabed sediments as indicators of subsurface hydrocarbon generation and entrapment,” *Appl. Geochemistry*, vol. 24, no. 10, pp. 1951–1970, Oct. 2009.
- [127] “Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method.” ASTM International, West Conshohocken, PA, Jun. 01, 2012.
- [128] Y. Mei, M. Chai, C. Shen, B. Liu, and R. Liu, “Effect of methanol addition on properties and aging reaction mechanism of bio-oil during storage,” *Fuel*, vol. 244, pp. 499–507, May 2019.
- [129] A. K. Mohammed, Z. A. Alkhafaje, and I. M. Rashid, “Heterogeneously catalyzed transesterification reaction using waste snail shell for biodiesel production,” *Helijon*, vol. 9, no. 6, p. e17094, Jun. 2023.
- [130] G. Li, B. Wang, and D. E. Resasco, “Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces,” *Surf. Sci. Rep.*, vol. 76, no. 4, p. 100541, Nov. 2021.
- [131] A. Drews, “Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity),” in *Manual on Hydrocarbon Analysis, 6th Edition*, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, pp. 126–126–8.
- [132] H. Wang, A. Gross, and J. Liu, “Influence of methanol addition on bio-oil thermal stability and corrosivity,” *Chem. Eng. J.*, vol. 433, p. 133692, Apr. 2022.
- [133] C. W. Manke and M. C. Williams, “The role of solvent viscosity in dilute-solution polymer rheology,” *J. Nonnewton. Fluid Mech.*, vol. 19, no. 1, pp. 43–52, Jan. 1985.
- [134] M. Yadav, A. K. Yadav, and A. Ahmad, “Enhancing combustion and emission characteristics of CI engines through atomization and fuel–air mixing using non-circular orifices: A path towards sustainable biodiesel utilization,” *Green Technol. Sustain.*, vol. 3, no. 3, p. 100161, Jul. 2025.

- [135] X. Y. Ooi *et al.*, “Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts,” *Renew. Sustain. Energy Rev.*, vol. 112, pp. 834–852, Sep. 2019.
- [136] N. Unsomrri *et al.*, “Fuel potential of bio-oil from co-pyrolysis of fresh palm fruit bunches and waste cooking oil sludge: composition, fuel properties, and carbon distribution analysis,” *Case Stud. Chem. Environ. Eng.*, vol. 12, p. 101265, Dec. 2025.
- [137] I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” *Egypt. J. Pet.*, vol. 25, no. 1, pp. 21–31, Mar. 2016.
- [138] J.-X. Xie *et al.*, “Highly efficient conversion of lignin bio-oil and derived phenols to cyclohexanols over low-loading Ni/C catalyst,” *Fuel*, vol. 371, p. 132030, Sep. 2024.
- [139] X. Hu *et al.*, “Upgrading of bio-oil via acid-catalyzed reactions in alcohols — A mini review,” *Fuel Process. Technol.*, vol. 155, pp. 2–19, Jan. 2017.
- [140] W. W. Kazmi, G. Amini, J.-Y. Park, and I.-G. Lee, “Catalytic upgrading of the heavy fraction of waste coffee grounds pyrolysis bio-oil using supercritical ethanol as a hydrogen source to produce marine biofuel,” *Chem. Eng. Sci.*, vol. 287, p. 119761, Apr. 2024.
- [141] Y. Lin *et al.*, “Thermal stability of plant sterols and formation of their oxidation products in vegetable oils and margarines upon controlled heating,” *Chem. Phys. Lipids*, vol. 207, pp. 99–107, Oct. 2017.
- [142] N. Asikin-Mijan *et al.*, “Towards sustainable green diesel fuel production: Advancements and opportunities in acid-base catalyzed H₂-free deoxygenation process,” *Catal. Commun.*, vol. 182, p. 106741, Sep. 2023.